TOP-DRIVE VS. BOTTOM-DRIVE HIGH-SHEAR GRANULATION: EFFECT ON GRANULE PROPERTIES OF AN IMMEDIATE RELEASE FORMULATION

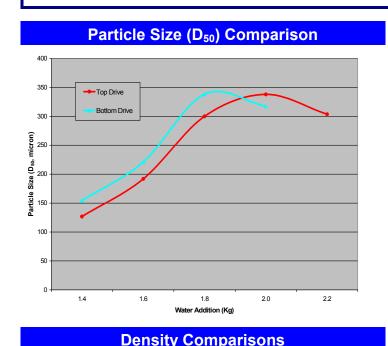
TIMOTHY J. SMITH¹, JIAN-XIN LI², BRIAN CARLIN², SHARON RAY², GARY L. SACKETT¹, PAUL SHESKEY³, LIRONG LIU⁴ ¹VECTOR CORPORATION: MARION, IA; ²FMC BIOPOLYMER: PRINCETON, NJ; ³DOW: MIDLAND, MI; ⁴PFIZER: BROOKLYN, NY UNITED STATES

PURPOSE

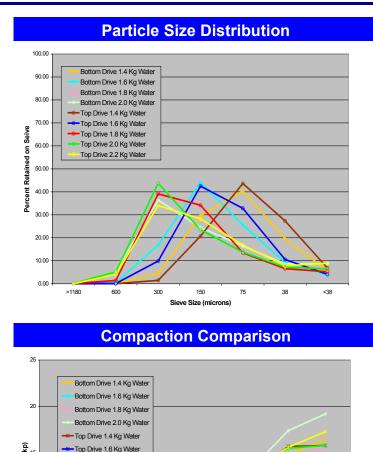
To compare top-drive (TD) high shear granulation versus bottom-drive (BD) high-shear granulation.

METHODS

Blends of pre-gelatinized starch, microcrystalline cellulose, and impalpable lactose were granulated with increasing amount of water using a 25-liter top-drive (TD) high-shear granulator (Vector GMX-25) and a same sized bottom-drive (BD) high-shear granulator (Powrex FM-VG-25). Mixer blade speeds used were standard manufacturer settings.

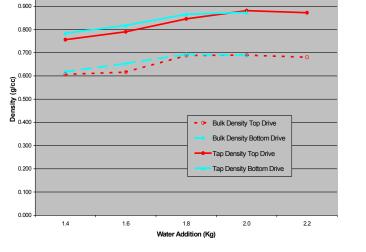

Granulates were fluid-bed dried and milled with a FitzMill Comminutor. The particle size profile, bulk and tap density, flow index, and Carr index of milled granules were measured.

A quantity of 591g of milled granules from each batch were blended with 6g of dye and 3g (0.5%) of magnesium stearate (MgSt) in a PK Blend Master V-blender (0.946 liter: 1 guart).


Blended granules were pressed into tablets on a four station instrumented Stokes model 512 press operating at 40 rpm. Compaction profiles were determined at 5, 10, 15, 20, and 23 kN.

Note: Formulation and process parameters are listed in Tables 1 and 2.

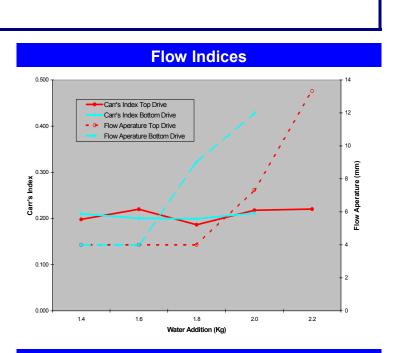
Table 1 – Immediate Release Formulation		
Ingredients	TD Granulations	BD Granulations
Starch 1500	15%	15%
MCC, Avicel PH-101	30%	30%
Lactose	55%	55%
Dry Weight (Kg)	6.1	6.1
Water Added (Kg)	1.4 / 1.6 / 1.8 / 2.0 / 2.2	1.4 / 1.6 / 1.8 / 2.0
Table 2 – Processing Parameters		
Wet Granulation		
Pre-Mix (Time/Tip Speed)	3 minutes / 5.4 mps for TD; 4.2 mps for BD	
Infusion (Rate/Tip Speed)	266 g/min / 5.4 mps for TD; 4.2 mps for BD	
Wet Mass (Time/Tip Speed)	3 minutes / 8.4 mps for TD; 8.1 mps for BD	
Drying	65-70°C	
Milling	6 Blades; Knives forward; Fast speed;	
	0.050 inch (1.3 mm) hole screen	
Blending	10 min for dye; 5 min for MgSt; @ 24 rpm	
Compaction	300 mg; 3/8 inch (9.5 mm) std. cup tablets	
	@ 5, 10, 15, 20, and 23 kN	



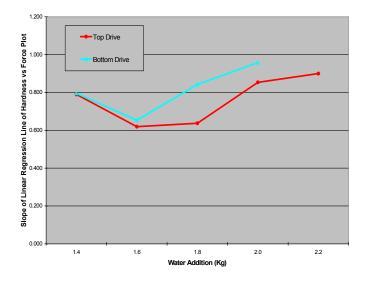
RESULTS

Compression Force (kN)

20



1.000


CONCLUSIONS

Top Drive 1.8 Kg Water Top Drive 2.0 Kg Water Top Drive 2.2 Kg Water

Top-drive and bottom-drive granulators produced granulations with no significant differences except that flow of dried granulate through a narrow aperture became more difficult at higher water levels. Granulation coarseness and tap density increased with increasing water addition to a point and then began to level off. Compaction profiles were not dependent on equipment design for the same level of water addition.

Hardness vs Compaction Force Slope

ACKNOWLEDGEMENTS

The authors extend their thanks to Juli Asmonga-Cardarelli of FMC BioPolymer, Glen Mutchler of Mutchler Inc. Pharmaceutical Ingredients, and Colorcon, Global Technical Support for their contributions of materials for this study.

Vector Corporation

FMC BioPolymer

