IMPACT OF DIFFERENT ROLL SIZES ON ROLLER COMPACTOR GRANULATIONS

TIMOTHY J. SMITH¹, LARRY MAHER¹ ¹Vector Corporation: Marion, IA United States

PURPOSE

To determine if constant linear roll face speed and compaction force/unit length (across roll width) would yield similar granulations from two different sized roller compactor rolls.

METHODS

Formulation used in this study is listed in Table 1. The lactose and microcrystalline cellulose (MCC) was blended in a V-blender for 3 minutes; the magnesium stearate was added to the mixer and blended for an additional 3 minutes.

Resulting blend was then compacted on two different roller compactors (TF-156 and TFC-220). Rolls used are shown in Equipment section. Compaction 7.0 and 14.0 kilonewton/cm. Co different roll speeds (188.5; 377. a constant screw to roll rpm ratio

Ribbon thickness was measured through a 14 mesh screen in a r granulations were sieved to dete (D_{50}) and measured for bulk dens

Table 1 – Formula

Ingredients/Characteristic

Mean Particle Size, D_{50} (µm)

MCC. PH-101

Lactose, 312

Magnesium Stearate

Bulk Density (g/cc)

A force was tested at two levels: impacts were generated with four .0; 565.5; and 754.0 cm/min) and o of 3:1. A. Compacted ribbons were milled rotary granulator. After milling, the remine arithmetic mean diameter sity.	20.0 cm Roll Diameter	
tion Characteristics	Screw	
Value		
20.0%	TFC- 220	
79.3%		
0.3%		

Table 2 – Compaction Process Parameters

92.0

0.470

Process Parameters	TFC-220	TF-156
Unit Roll Force		
7.0 kN/cm	3000 pounds	3.5 tons
14.0 kN/cm	6000 pounds	6.9 tons
Roll Speeds		
188.5 cm/min	3 rpm	4 rpm
377.0 cm/min	6 rpm	8 rpm
565.5 cm/min	9 rpm	12 rpm
754.0 cm/min	12 rpm	16 rpm
Screw to Roll RPM Ratio	3:1	3:1

EQUIPMENT

Vector corporation

Mean Particle Size at Various Roll Speeds

Bulk Density at Various Roll Speeds

For low to mid-range roll speeds, constant linear roll face speed and constant compaction force/unit length appears to yield similar granulations in terms of mean particle size (D₅₀) and bulk density. Increasing the speed of the rolls (reducing the dwell time) in this range appears to cause a downward shift in the ribbon thickness, D₅₀, and bulk density. The reduction in D₅₀ and bulk density is probably a result of less time being allowed for bonds to form between particles. Thickness of the ribbon does not seem to impact the characteristics of the granulation for a constant roll speed and compaction force/unit length.

The difference in roll and screw design between the two machines do appear to cause a shift in granulation characteristics at high roll speeds. This is thought to be a result of a change in slippage of the powder at the roll face and a corresponding change in the precompression applied by the screw.

Ribbon Thickness at Various Roll Speeds

CONCLUSIONS