COMPARISON OF END-POINT DETERMINATION BY WET-MASS TIME, PRODUCT TEMPERATURE CHANGE, AND POWER CONSUMPTION FOR SCALE-UP OF HIGH SHEAR GRANULATION OF IMMEDIATE AND CONTROLLED RELEASE FORMULATIONS

TIMOTHY J. SMITH¹, GARY L. SACKETT¹, TY GOLDSBERRY¹, LARRY MAHER¹, TOM WHITING¹, LIRONG LIU² ¹VECTOR CORPORATION: MARION, IA UNITED STATES ; ²PENWEST PHARMACEUTICALS CO.: PATTERSON, NY UNITED STATES

PURPOSE

To determine the most effective end-point method for scale-up of wet granulations using the following methods:

- Wet-mass time (WMT) 1)
- 2) Product temperature change (ΔT)
- 3) Peak power consumption (KW_p)

METHODS

One immediate release (IR) and one controlled release (CR) formulation were used in this study. Formulations and process parameters are shown in Tables 1 and 2. The processes were first optimized in a 75-liter high-shear granulator (Vector GMX-75) to collect end-point parameters (ΔT , KW_p, and wet-mass time). These parameters were then used as methods of determining the end-point for granulations made in a 600-liter high shear unit (Vector GMX-600). Mixer blade tip speed for all processing steps was the same for both the 75 and 600-Liter machines. After granulation, a portion of each batch was dried with 65°C air using a fluid-bed dryer until the product was less than 2.5% moisture content. Product was milled using a Quadro Comil® at 2500 rpm with a 0.050 hole size screen. Sieve analyses were performed to determine the arithmetic mean diameters (D₅₀) for fluid bed dried (FB) and milled granules.

Table 1 – Formulations						
Dry Ingredients	Immediate Release	Controlled Release				
HPMC, K 4 M		30%				
Starch 1500	15%					
MCC, 50M	30%					
Lactose	55%	70%				
Batch Volume (L) - 75L/600L	37.5 / 300	37.5 / 300				
Batch Weight (Kg) - 75L/600L	18.3 / 146.7	16.6 / 134.1				
Bulk Density (g/cc)	0.489	0.447				
Table 2 – Processing Parameters						
Process Parameters	Immediate Release	Controlled Release				
Pre-Mix Time	3 minutes	3 minutes				
Water Infusion Time	8 minutes, 75L 11.5 minutes, 600L	8 minutes, 75L 10 minutes, 600L				
Water Added	24.7 %	28.1%				
Wet Mass Time	Varies, see results	Varies, see results				

IR Formulation Summary								
Batch Size (Kg)	Method	WMT (min)	∆T (° C)	KWp	FB D50, μm	Milled D50, μm		
18.3	Control	7.0	22.5	4.6	1157	N/A		
	WMT	7.0	21.4	38.0	1163	674		
146.7	ΔT	7.2	22.5	38.0	1293	664		
	KWp	4.1	8.0	38.0	941	627		

Particle Size Distribution - IR Formulation - Fluid Bed Dried

Control WMT Based Delta Temp Based KWp Ba < 75

Sieve Size (mic

Particle Size Distribution - IR Formulation - Milled WMT Baser Delta Temp Based KWp Base 850 425 250 Sieve Size (micron)

RESULTS

CR Formulation Summary									
Batch Size (Kg)	Method	WMT (min)	∆T (° C)	KWp	FB D50, μm	Milled D50, μm			
16.6	Control	7.0	12.6	2.7	826	N/A			
	WMT	7.0	10.4	18.0	860	567			
134.1	ΔΤ	7.1	11.4	20.3	953	581			
	KW _p	4.6	6.7	18.4	1069	566			

CONCLUSIONS

All three end-point determination methods (WMT, ΔT , and KWp) yielded similar granulations for both IR and CR formulations. WMT and ΔT methods appeared to provide better correlation to particle size for unmilled granules than does the parameter KWp. From this study. KWp per unit weight for a given formulation was also similar for 75 L and 600 L high shear mixers (0.251 vs. 0.259 KWp/Kg for the IR formulation and 0.148 vs. 0.141 KWp/Kg for the CR formulation). Milling equalized the particle size (D₅₀ and distribution) no matter which end-point determination method was used. Therefore, the method of end-point determination may not be as critical as the milling process.

Vector Corporation

Penwest Pharmaceuticals Co.