COATING PROCESS STEP DEVIATIONS MONITORED VIA USE OF A GRAPHICAL IMAGING TOOL

TIMOTHY J. SMITH¹, SHAWN ENGELS¹, BRIAN JENSEN¹, ALAN PIEPER²

¹VECTOR CORPORATION: MARION, IA UNITED STATES; ²SYMPATEC: LAWRENCEVILLE, NJ UNITED STATES

PURPOSE

To study the particle size and shape changes during coating of ibuprofen coated beads and determine if process changes could be detected.

METHODS

1 Kg of 25/30 mesh NP's were loaded into a Vector Corporation GXR-35 rotary fluid bed. 500g of micronized ibuprofen was loaded into a K-Tron KT-20 powder feeder, and was dry layered onto the cores using 5% PVP K-30 as a binder. A 2% coating of Eudragit RS-30D was applied following the powder addition. Talc was added as a final processing step to keep the coated beads separated.

Product samples that were removed during the process were analyzed with a graphical imaging device (QicPic, Sympatec) to study particle size, aspect ratio, and sphericity changes.

Process Equipment

VFC-Lab 3 fluid bed with GXR-35 (conical rotor insert)

Image Processing

Diameter of the Circle of Equal Projection Area (EQPC) Equals the diameter of a circle that has the same area as the projection area of the particle

Graphical imaging technology can provide a "picture" of changes in a process. Coupled with analyzing the effects of individual processing steps, the results of graphical imaging can indicate process deviations and what caused the deviation.

Feret Diameter

This is not a diameter in its actual sense but the common basis of a group of diameters derived from the distance of two tangents to the contour of the particle in a well defined orientation (see figure).

Aspect Ratio or Roundness

Aspect ratio is the ratio of Feret_{min} to Feret_{max}. An aspect ratio of 1.0 indicates that the particle is perfectly round.

Sphericity or Smoothness

Sphericity, S, is the ratio of the perimeter of the equivalent circle, P_{EQPC}, to the real perimeter, P_{real}.

The sphericity is defined by the formula below:

 $S = P_{EQPC} / P_{real} = 2 \times (pi \times A)^{0.5} / P_{real}$

The result is a value between 0 and 1. The smaller the value, the more irregular is the shape of the particle. This results from the fact that an irregular shape causes an increase of the perimeter.

CONCLUSIONS

